Bushing blocks optimization for an external gear pump

MARIA PIA D'AMBROSIO - SixSigmaIn Team snc MARCO MANARA - Casappa SpA

Summary

- Companies profile: SixSigmaIn Team & Casappa
- Hydraulic pumps basic concepts
- Case Study and Project
- Drawing Tolerances statistical definition
- Mathematical model
- Process Capability basic concepts
- Ppk Risk model
- Ppk Risk model: step I
- Responses scenario
- Ppk Risk model: step 2
- Ppk Risk model: final solution choice
- Results evaluation
- Why @Risk
- DoS Design of Simulations

Company profile - SixSigmaIn Team

SixSigmaIn Team - Lainate (Milan Area, Italy)

The distinguishing feature of SixSigmaIn Team consists in the merging of competencies related to Statistical Problem Solving, Adult Learning, Business Intelligence and Tools Development.

SixSigmaIn Team provides advanced and customized DMAIC, DFSS, Design of Experiments, Tolerance and Reliability Analysis trainings and solutions for an effective industrial application of statistical analysis with the best statistical tools.

SixSigmaIn Team's clients include the Italian locations of companies such as Siemens VDO (now Continental Automotive Italy), Osram Sylvania, Cabot, Rolls Royce, Philips, Reckitt-Benckiser, G.D Group, Zeiss Vision, Saes Getters, Diasorin, GSK, Solvay Pharma and others.

Some Decision Support Systems / Stat Tool developed by SixsigmaIn Team:

- MTBridge Engine © : Minitab Automation Tool
- Champion of Italy © : Monte Carlo Simulation and Tolerance Analysis add-in for Minitab
- R&M 2000 ©: statistics application to analyze, target and control pharma products market share
- R&M Rules and Maps © : software tool and book for strategic marketing and position analysis.

International Collaboration Network

- Stat-Ease Inc
- BMG Breakthrough Management Group Inc

Company profile - Casappa S.p.A.

Casappa S.p.A. – HQ: Parma (Italy)

Casappa was founded in 1952.

Through the holding Finrel SpA controlled by the Casappa brothers, it groups 7 subsidiary companies and 5 associated companies.

The group has more than 1300 employees and had a turnover of 227 million euro in 2008.

The core business of Casappa SpA is Hydraulics:

- external gear pumps and motors
- axial piston pumps and motors (fixed and variable displacement)
- axiai p - filters

nent) technology and great attention to

High technology and great attention to Research & Development are essential to the Company.

Highly customer-oriented, Casappa codesigns customized solution with the biggest world leader manufacturers of earthmoving and agricultural machines

Company profile - Casappa S.p.A.

The presenters

Maria Pia D'Ambrosio - SixSigmaIn Team snc

Maria Pia works as Senior Trainer at her own Company – SixSigmaIn Team.

She studied Chemistry at University of Milan and she worked as Process Engineer for metallurgical Companies for about 15 years.

She has been involved in the Six Sigma activities and Statistic since 1997 and is a BMG Certified Master Black Belt.

Her main specialization knowledge is Design of Experiments, Tolerance and Reliability Analysis. She is Design Expert and Minitab teacher / specialist.

Her main activities are coaching, tutoring and supporting people and Companies to get a major breakthrough in their processes.

Marco Manara - Casappa S.p.A.

Engineering Manager of the gear pumps and motors business unit at Casappa HQ. Six Sigma Black Belt (certified by BMG - Breakthrough Management Group - in 2008). Deeply involved in the Six Sigma deployment in Casappa, he has started a process of reengineering and re-designing several company products, using statistical definition of the process tolerances and Design For Six Sigma concepts.

In the last two years, among other responsibilities, he has been working on developing several models for tolerance analysis application.

SixSigmaIn Team & Casappa S.p.A. collaboration

Our collaboration started in 2006 Main works together:

Six Sigma and Advanced Statistics Training

SixSigmaIn has been in charge of training Green and Black Belts during the Casappa Six Sigma program deployment

Optimization of measurement systems

This was the key project carried out during the first two years of Six Sigma deployment

< Casappa is using high-level competence in the analysis phase in order to apply pragmatic but reliable and robust solutions [...]. A modern manufacturing company can not take the risk of not understanding if a discrepancy in the quality control depends on a not optimized process or on errors introduced by the measurement system ! >

Tolerance analysis studies

The example published on Palisade website concerned the optimization of the assembly for a low noise gear pump

POWFR

DESIGN

Pump internal pressure distribution

Due to the pressure distribution, a force acts on the gear and pushes it towards the inlet side of the housing.

This phenomenon is responsible for the material removal from the body produced during the initial break-in of the pump. The material removal is essential for the good performance (high efficiency) of the pump.

The bushing blocks geometry plays a key role in determining the material removal amount.

Case Study: Polaris PLP30

The bushing blocks geometry plays a main role in the process of defining functional and mechanical parameters related to the performance of the pump (high efficiency, low noise level, assembly ability).

In this specific case (a pump of the series Polaris PLP30), **a change in the supplier chain and the implementation of a different production technology** have required a re-design both of the geometrical characteristics of the blocks and of some related dimensions of the housing where the blocks are installed.

Let's take a look at the current situation...

Case Study: Polaris PLP30

The Grc Ppk is only 0.36 and the GAP Ppk is 0.99... not enough! (certainly, if GAP > 0, there will be a scrap)

FLUID POWER

DESIGN

A couple of parameters related to the material removal:

The Depth_135 Ppk is 0.23 and the Ang_Depth Ppk is 0.86 definitely not enough!

Case Study: Polaris PLP30

We have acquired a strong experience between 2007 and 2009 working on Drawing Tolerances Statistical Analysis and Capability Analysis of our processes. That was the starting-point of this new project, whose purpose is:

- to improve and optimize this pump performance to gain
 - economical benefits (reduction of internal scraps)
 - marketing advantages (higher guality and performance)
- AND to create and standardize an internal statistical procedure to design all our new pumps

How is it possible to solve the problem in an efficient and robust way? To be robust, a Statistical Analysis of data is required. To be efficient, we have to Simulate. To win, we need Discipline and Method.

Drawing Tolerances - Robust definition using Statistics

CMM data

CMM measurements (SPC) after the process optimization carried out in 2007-2008

best distribution identification 😰 🖬 💪 금 (금 전) 🗇 (집) X 🕰 🕸 - 🏈 (의 - 이 -) 🌃 🧶 Σ - 한 전 V (제 🐼 6% - - @ 🖽 🗃 🗍 Summary for Dr Anderson-Darling Normality Test A-Squared 0.73 P-Value 0.056 Mean StDev 56.973 0.004 Variance 0.000 Skewness -0.157274 Kurtosis -0.564138 413 0.005 0.006 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0.018 0.005 0. Minimum 1st Quartile 56.964 56.971 0.003 0.004 0.007 0.004 0.007 0.004 0.024 31,891 31,893 31,893 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 31,993 30,160 30,179 30,165 30,175 30,175 30,163 0.004 0.015 0.006 0.003 0.005 0.029 11.995 0.029 11.995 00 0.006 0.005 0.014 0.004 31.994 31.995 31.996 31.996 31.996 31.996 31.996 31.996 31.996 31.996 31.996 31.996 31.996 31.996 31.995 30.175 30.175 30.175 30.175 30.175 30.174 30.210 30.210 0.007 0.004 0.013 0.006 0.045 31.990 0.045 31.992 31.993 31.992 31.993 31.992 31.993 31.992 31.993 31.993 31.993 31.993 31.993 31.993 31.991 30.161 31.992 31.993 31.995 30.161 3 Median 3rd Quartile 56.974 56.976 Probability Plot for Dr 1 990 1 990 1 999 1 989 1 989 1 989 1 989 1 989 1 988 0 177 0 184 0 193 0 177 0 179 0 179 0 189 Goodness of Fit Test Normal - 95% CT Lognormal - 95% CT AD = 0.729 P-Value = 0.056 Lognormal AD = 0.729 P-Value = 0.056 56 973 55,0778 3-Parameter Lon AD = 0.741 P-Value = * Exponential AD = 74.295 P-Value < 0.003 3-Parameter Lonnormal - 95% CI Exponential - 95% CT 10.0 100.0 1000.0 Dr 0.1 1822.69 1822.70 Dr - Threshold 1822.71 0.1 1.0 Process Capability of Dr Overall Capability Pp 1.01 PPL 1.00 PPU 1.03 Ppk 1.00 Cpm * Process Data 56.9612 LSL 56.9612 Target * USL 56.986 Sample Mean 56.9734 Sample N 162 The determined StDev (Overall) 0.00407492 tolerance range becomes the drawing 56,961 56,965 56,969 56,973 56,977 56,981 56,985 tolerance Long Term process capability

and calculation of the tolerance range for Ppk = 1 (or 1.33)

Acquired data analysis and

Drawing Tolerances - Robust definition using Statistics

Automation can be applied to the measurements (e.g. when using CMM data acquisition) and analysis of the parts dimensions to define the type of distribution better approximating the real data and the process natural variation and capability.

Industrial Statistics with MTBridge Engine the real cost savings in your Six Sigma projects

In this way, the process variation and the type of distribution of the data are continuously available and updated and can be used for short term and long term capability analysis. The long term capability data are used to define the project tolerances or can be used as inputs in Monte Carlo simulations for tolerance analysis projects.

Tolerance Analysis: Monte Carlo Simulation

Before starting with a Monte Carlo Simulation, we need to define a model of the pump:

- 1. Definition of the responses we want to evaluate: Y₁, Y₂, ..., Y_m Definition of the desired targets for all the responses (LSL and/or USL) in order to optimize the pump performance
- **2.** Definition of the factors involved: $x_1, x_2, ..., x_n$; each factor x_i will be represented by:
 - a Nominal Value x_i
 - a Tolerance range x_{i,USL} x_{i,LSL}
 - a characteristic statistical Distribution (Normal, Weibull, ...)
 - In this specific project, what we want to optimize is the Nominal Value (using Ppk). The Tolerance range and the data Distribution are given by the process (statistical definition of the tolerances)
- 3. Mathematical model of the pump: definition of the transfer functions

$$Y_{1} = f_{1} (x_{1}, x_{2}, ..., x_{n})$$

$$Y_{2} = f_{2} (x_{1}, x_{2}, ..., x_{n})$$

...

$$Y_{m} = f_{m} (x_{1}, x_{2}, ..., x_{n})$$

1. Responses

10 responses have to be optimized simultaneously

For all the responses, desired targets (LSL and/or USL, Ppk goal) are defined, in order to optimize the pump performance

2. Factors of the model

The mathematical model presents **19** factors. Due to process constraints or economical reasons, some of them are not modifiable. Nevertheless, all of them must be taken into account in the model: they will affect the responses and their variance.

in the final mathematical model.

2. Factors of the model

Each factor x_i is represented by:

- a Nominal Value x_i
- a Tolerance range $x_{i,USL}$ $x_{i,LSL}$
- a statistical Distribution (Normal, Weibull, ...)

Process Capability of Dr

We want to optimize the Nominal Value (and consequently the relative Ppk Value) while the Tolerance range and the data Distribution are given by the process (statistical definition of the tolerances)

In this case study, we have focused on 8 factors which are modifiable in terms of nominal value. *The space of possible variation of these 8 factors will be investigated using simulations.* We will try to find the optimal combination of the factors able to best fulfill the targets (LSL and USL) we have defined for the responses.

3. Mathematical model

All the responses are expressed mathematically as a function of the factors. The model is **quite complex**, as it can be seen in the equations showing the mathematical relationship between some of the responses and the input factors. An example:

The Overall Process Performance indices (Pp,Ppk) are an estimate of the Long Term Process Capability.

They are a measurable property of a process to the specification or the ability of a process to produce output within specification limits.

The Long Term Process Capability is an effective metric for communicating differences before and after an improvement.

If the upper and lower specification limits of the process are USL and LSL, the estimated mean of the process is μ (position measure) and the estimated variability of the process, expressed as a standard deviation (dispersion measure), is σ , then commonly-accepted Overall Process Performance indices include:

$$\hat{P}_p = \frac{USL - LSL}{6 \times \hat{\sigma}}$$

Pp estimates what the process would be capable of producing if the process could be centered. Assumes process output is approximately normally distributed.

$$\hat{P}_{pk} = \min\left[\frac{USL - \hat{\mu}}{3 \times \hat{\sigma}}, \frac{\hat{\mu} - LSL}{3 \times \hat{\sigma}}\right]$$

Ppk is a metric that does not account for process performance that is not exactly centered between the specification limits, and therefore is interpreted as what the process would be capable of achieving if it could be centered and stabilized.

Formulating this the most generally, estimation of a process performance boils to a comparison of the process variability (it is so-called "process voice") with client's expectations defined through specification limits (it is so-called "customer voice").

Pp and Ppk are based on total variability. They use an "inflated" standard deviation to account for changes over time.

These definitions are motivated by the fact that for a normally distributed process, 6σ is the actual process spread covering 99.73% of the parts; if the specified process tolerance USL-LSL = 6σ , then Pp = 1 and the process is said to be 'just capable'.

If Pp is greater than 1 then the process is meeting the specifications as long as the mean is centered.

If Ppk is greater than 1 then the process mean is sufficiently far from the specification limit. The higher the number, the better the data looks within the spec limits.

If the process is stable and in control the estimate of Pp is similar to the estimate of Cp (Short Term Process Capability, based on inherent common cause or within subgroup variation from Statistical Process Control (SPC) chart methods).

The above formulas for Pp, Ppk all assume that the data is Normally distributed. If the data is not Normally distributed, the above formulas do not work (i.e. give gibberish numbers).

What happens if the process is not approximately normally distributed?

The indices that we considered thus far are based on normality of the process distribution. This poses a problem when the process distribution is not normal.

One should note that there are an infinite number of distributions which may show the familiar bell-shaped curve, but are not Normally distributed. This is particularly important to remember when performing capability analyses. We therefore need to determine whether the underlying distribution can indeed be modeled well by a Normal distribution.

If the Normal distribution assumption is not appropriate, yet capability indices are recorded, one may seriously misrepresent the true capability of a process.

The most common methods for handling non-normal data are:

• Non-parametric Approach Using the Empirical Distribution.

• Transform the data so that they become approximately normal. Transformations do not always work. Many a time, it will be also difficult to identify and use the correct transformation.

• Identifying the distribution of the data. Based on probability plots and goodness-of-fit tests, you can choose a distribution that best fits the data prior to conducting a capability analysis. In this last case there are two methods of calculation of ppk index

- ISO / Quantile / Clements Method
- Bothe / Z-scores method

Why the Bothe / Z-scores Method is Better

For any distribution, the Z-scores method takes the actual risk level and calculates the metric value corresponding to a normal distribution with the same risk level. Using this method, any given metric value always means the same level of risk.

Why Not Use the Normal Formulas Always?

Expert opinions and statistical softwares vary on this practice, some recommend and use it, many are opposed, some others are undocumented.

The procedure we use (and suggest) to evaluate the Response Capability in a Simulation

Distribution Identification to evaluate the optimal distribution for the simulated data based on the probability plots and goodness-of-fit tests, prior to conducting a capability analysis study.
Bothe / Z-scores method for Ppk calculation.

See our 2005 Economia & Management paper or 2009 ASQ, Andrew Sleeper's paper for more info

Ppk Risk model - Resuming ... we use ...

The procedure we use (and suggest) to evaluate the Response Capability in a Simulation

• Distribution Identification to evaluate the optimal distribution for the simulated data based on the probability plots and goodness-of-fit tests, prior to conducting a capability analysis study. (*)

• Bothe / Z-scores method for Ppk calculation.

Why? (Plus)

- Capability metric is a measure of risk;
- We use capability metrics to make decisions risk optimization;
- Applying the normal formulas always means that any particular value of capability metric could represent much less risk or much more risk, depending on the shape of the distribution;
- A good capability metric means the same thing to management, regardless of the process simulation;
- Using this method, any given metric value always means the same level of risk.
- Incorrect Ppk values in a Solver context could be problematic if Ppk metrics are not robust.

Problems (Minus)

- Requires long time for elaboration;
- Not available as standard SixSigma command / function in @Risk or Crystal Ball.

(*) When automation is necessary, the distribution with the smallest GoF test statistics is chosen, even if it does not indicate that the distribution best fits the data.

Ppk Risk model - How to simulate our data input scenario?

[engineering point of view]OFAT driven or[mathematics point of view]Solver driven or[statistists point of view]DoE design driven ?

No doubts in this complex case study: Design of (Simulated) Experiments driven !

Adding DoS to our @Risk model

Ppk Risk model - Single Run

Microsoft E	Excel - pDoS	.xls														_ 8 ×
📳 Ele Edit View Insert Format Tools Data Window DoSimulations @RISK Help Type a question for help 🗸 🗗 🗙																
🗋 🕝 🖟 👌 🕘 🐧 ザ 🖏 🗼 🖓 • 🏈 • 🖤 • 😓 Σ • 👌 👬 🛄 🦓 100% • 🞯 💂 Tahoma 🛛 • 8 • Β Ζ Ψ Ε 🚍 亜 🖼 🗐 % , % % 岸 車 🖄 • 🗛 • 👔																
🕍 🎪 🏂 🍂 🔌 🏰 🜊 🜊 🔎 🚧 🍸 🔛 📰 🕼 🐨 🍪 🎬 🦑 🥔 📑 🤮 Iterations 8192 🖤 Simulations 1 🖤 🎲 💆 🗮 🛣 🙀																
	-	fx					10			1100						
	SixSigmaIn.It															
(Ret	Techr	nologies,	Services,	Training	for Six Si	gma and I	Design o	f Experim	nents							
A CONTRACTOR	Be curic	us always! Fo	r knowledge v	will not acquire	you. You mu	st acquire it! ·	Sudie Back									
_	DoS © Project Code Gear Pump Math Model															
	Polaris PLP30 Marco Manara - Casappa spa															
				0	Date	01/12/2009	14/04/2010	PLP30		1	postription					
					Signature	Franco Anzani	Franco Anzani				1				1	
					RSM Design Ch	oice	CCD Alpha value		Iterations		Ppk Method		GoF Test		State	
				2	1 CCD		1 Face Center	ed = 1 ered = 1	1 4 KB Iterati	ions	1 Not Param	ietric	1 Chi Squar	1 Chi Square test		
	2 Box Behnken 2 2^(2/4) = 1.414 2 8 KB Iterations 2 ISO method 2 Kolmogorov Smirnov test 2 Octored 2 30(2/4) = 1.424 2 16 KB Iterations 2 ISO method 2 Address Dational test															
					4 User Define	ed 🛛	4 2^(4/4) =	2	4 32 KB Itera	ations	o boune 72.	303103			Logence mean	
							5 Practical =	1.5	5 64 KB Itera	NIONS					it replace	
-				1											1.	
Input	Unit	Descrizione	Description	Influence on	Nominal Value	- Tol		Distribution	D Day 1	D_Par_2	D_Par_3	D_Par_4	D_Par_5	Values	DoS Low Lev	DoS Upper Lev
Ic		Interasse Sed	i Gear housing i	c GAP, Clearanci is CAP, Clearance	46.900		DOSIMUAL	IONS WICH OT:		0.0067				46.900	46,880	46.920
Dr		Ø Lobo1	Bearing block	e Beta, GAP, Inv	57.000	0.5	Indipende Total Res	ent Factors	29 12	0.0033				56,970	56,980	57,020
SIr		Val. medio Sei	m Bearing block	d Beta, GAP, Inv	23,430	S .0	Analyzed	Responses	10	0.0050				23.445	23.410	23.450
Db		Diametro inter	rr Bushing intern	a <mark> Involute, Dg0,</mark>	28.075	a c	Time requ	uired (seconds)	18.5557	0.0133				28.075	28.060	28.080
Rs		Raggio 1 Raggio 1 A	Radius 1 Radius 1 positi	Beta, GAP, Dep ir Beta, GAP, Dep	16.000	is is	Monte Ca	rlo Simulation	4 4840	0.0333				16.000 29.250	14.000	18.000
b		Raggio 1 B	Radius 1 posit	ik Beta, GAP, Dej ik Beta, GAP, Dej	29.250	20	Fit Respo	nses and Stat (Calc 12.9479	0.0833				29.230	23.000	29,000
Dc_		Ø Sede Ingr.	2 Gear housing.	i GAP, Clearanc	57.000	5.C	Sensibility Saving M	/ Coefficient Ca emory	alc 1.1212 0.0026	0.0033				57.030		
Dr_		Ø Lobo 2	Bearing block	e Beta, GAP, Inv	57.000		Ĩ	·	_	0.0033				56.970		
58r_		Diametro inter	rt Bearing block	c Beta, GAP, Inv	23.430		-	ОК		0.0050				23.445		
Responses Sur	mmary								B 11		D 11 400	B 11		Resno	nse	
Exp Value	0.030	AF 207.500	-0.157	0.213	Beca_gradi 21.032	0.070	GFC 0.030	Ang_Depth 136	0.041	-0.002	0.037	0.035	•	Cope		
Analyzed			7	•	•	7	•	7	•	•	•	2		Analy	/SIS	
Unit													10	single	(aun	
LSL													(•	single	run)	
Best Distr Fit			RiskLognorm(RiskNormal(0.	RiskNormal(21	RiskBetaGene	RiskWeibull(9.	RiskPearson5(RiskNormal(0.	RiskWeibull(4.	RiskNormal(0.	RiskNormal(D		noot Casal Grant Grant Coost Casal Coost Casal Coost Coo	a const danse doored danse danse danse doored danse danse danse	
GOf Fit			0.13	0.32	0.12	0.64	7.01	0.52	0.73	1.95	0.30	1.75			/	
df_L df_u			0	0	0	2,017	7	0	313	107	66 2 117	1,023		-		
df T			0	0	0	3,447	7	43	500 618	107	2,117	1,038				
PpL				1.75	2.65	0.96	1.45	2.65	1.14	1.23	1.27	1.03		•		
PpU			2.54		0	0.99	2.06	1.31	1.14	1.77	0.95	1.39	P			
Ppk 7 Score			2.54 7.61	1.75 5.25	2.65 7.65	0.96 2.70	1.45 4.34	1.31	1.14 3.23	3 70	0.95 2.85	1.03 3.08				
1* Corr Input			e_	Wk	b.	e_	Dc	ey	9,20 ey	ey	ey	ey				
Sensity Coef			-0.51	-0.64	0.90	0.55	0.57	-0.82	0.74	0.68	0.83	0.62				
2* Corr Input			e	Wk_	Rs	e 1.51	Dr	Ic a ga	Db	e	Db	Db				
pensity Coef			-0.50	-0,64	-0,36	U.54	-0,56	U.28	0.55	0.39	U.4/	0.55				

Model Robustness_Test

6

SixSigmaIn Team

Ppk Risk model - Running the Second Simulation Step

Microsoft I	Excel - pDo5	.xls														_ 8	×
Eile Ed	it <u>V</u> iew Ir	nsert F <u>o</u> rmat	Iools Dat	a <u>W</u> indow (o <u>S</u> imulations	@RISK Help								Туре	a question for h	ielp - 8	×
🚺 📸 🛃 👌 🎒 🐧 🖏 🐇 🐴 🐘 - 🏈 🔊 - 🔍 - 🧶 Σ - 24 👬 🏨 🦓 100% - 🥘 📲 Tahoma 8 Β Ι U = 🚍 🗐 🗐 % , ‰ 🖧 🚎 🛃 Δ																	
😰 🛓 🏂 📈 🕼 🖉 😫 🌊 🜊 📮 🍋 🏹 📳 🕱 🛒 🔞 🏭 🎁 🖋 🎯 📲 🦉 Iterations 8192 🐳 5imulations 1 🔤 🐲 🖳 🛃 💭																	
	-	fx					No.										
		gmaIn.It															<u> </u>
(R	Techr	nologies,	Services,	Training	for Six Si	gma and	Design (of Experim	nents								
	Be curio	us always! Fo	or knowledge	will not acquire	you. You mu	st acquire it!	- Sudie Bad	<	_/		New	DoS F	Facto	r Lev	el Ra	ndes	
					DoS © Project					Code	Gear Pump Mat	h Model					
					Polaris PLP30	Drawn	Approved	File	_(Index Rev.	(tigr	nene	a and	a cen	terec	ion	
					Date	01/12/2009	14/04/2010	PLP30		5	hes	t are:	a of n	revic	te euc	en)	
					Signature	Franco Anzani	Franco Anzar	<u>ii</u>			NCO	Luici	uorp				
					RSM Design Ch 1 CCD	loice	1 Face Cent	alue ered = 1	2 8 KB Iterations	ins	3 Bothe / Z Sci	res	Gol-Test 2. Anderson Da	rlina test	State		
					1 CCD		1 Face Cer	tered = 1	1 4 KB Itera	ions	1 Not Parame	etric	1 Chi Square	test	-		
					2 Box Behnki 3 Optimal	30	3 2^(2/4)	= 1.414 = 1.682	3 16 KB Itera	ations	3 Bothe / Z S	cores	3 Anderson D	75, annov test Darling ^s est			
					4 User Defini	ed	4 2^(4/4) =	= 2 = 1.5	4 32 KB Iter- 5 64 KB Iter-	ations ations	6 AL				It replace		
								1000		22240							
							2.1		20.00								
Input	Unit	Descrizione Interasse Sec	Description ti Gear bousing	Influence on	Nominal Value	- 10	+ 101	RiskNormal	D_Par_1 46.905	0_0067	D_Par_3	D_Par_4	D_Par_5	Values 46 905	46.895	46 905	
Dc		Ø Sede Ingr.	1 Gear housing	ir GAP, Clearand	6 56.995	10		RiskNormal	57.025	0.0033				57.025	56.995	57.005	
Dr		Ø Lobo1	Bearing block	e Beta, GAP, In	57.005	-o./	K - Fittina 'R	esn 3 ¹¹	F7 07F	9000 P				56.975	56.995	57.005	
SIr		Val. medio Ser	m Bearing block	d Beta, GAP, Inv p: Involute, Dati	23.425	o.c	i Loanorm			P				23,440	23.425	23,435	
Rs		Raggio 1	Radius 1	Beta, GAP, De	16.100	-0,				8				16.100	15,900	16.100	
а		Raggio 1 A	Radius 1 posi	<mark>tic</mark> Beta, GAP, De	29,150	-0.:				P .				29.150	29.150	29.350	
b Oc		Raggio 1 B Ø Sede Ingr	Radius 1 posil	ticBeta, GAP, De 14 GAR, Clearan	25.900 56.005	-0.:				Cancel B				25.900	25.900	26.100	
Dr_		Ø Lobo 2	Bearing block	t∎ GAF, Clearant € Beta, GAP, In	57.005			RiskNormal	56.975	0.0033				56.975			
50r_		Diametro inter	rt Bearing block	<mark>c Beta, GAP, In</mark>	23,425			RiskNormal	23.440	0.0050				23.440			•
Responses Sur	nmary															Done 53	
Name Eve Value	Involute	AF	GAP	Dg0	Beta_gradi	Clearance	Grc	Ang_Depth	Depth	Depth_13	5 Depth_180	Depth_225					
Analyzed	0.030	207.500	-0.117	U.201	20.531	V.075	0.022 V	14Z	0.043	-0.009	U.U.34	0.040					
Unit																	
LSL													E2		00110		
Best Distr Fit			RiskLognorm(RiskNormal(0.	RiskNormal(20	RiskBetaGene	RiskWeibull(7	. RiskPearson5(RiskNormal(0.	RiskBetaGen	e RiskNormal(0.	RiskNormal(0.	- 33	runs	save	u	
GOf Fit			0.13	0.32	0.12	0.64	1.07	0.47	0.56	0.17	0.28	1.50	in	mer	norv		'
df_L				1	0	4,960	809	0	185	1,125	96	352	<u> </u>				
df T			0	1	0	459 5,419	0 809	63 83	369 574	1,125	1,773	385					
PpL			÷	1.56	2.65	0.86	1.05	2.65	1.19	1.02	1.24	1.13					
PpU			2.06			1.10	2.55	1.26	1.12	1.70	0.97	1.33					
Ppk Z Score			6 19	1.56 4.67	2.65 7.65	0.86 2.55 -	3.15	1.26	1.12	3.06	0.97	1.13 3.36			6		
1* Corr Input			e_	Wk	ь	2.00	De E	Run #F	54 of '	282	ey	ey					
Sensity Coef			-0.50	-0.64	0.90	0.55	0.53	-0.82	0.75	0.66	0.82	0.63					
2* Corr Input			e _// 5//	Wk_ -0.64	Rs -0.36 -	e	Dr -/2.52	inpr	ogres	SS e	Db	Db 0.55			1	CXX	
	iodel / Robi	istness Test	/ S. Values /	70,07	90.00	0,04	-0.02	Dougo -		0.73		0,00				S	-
Sim 54 / 282 wit	:h 8192 iter us	ing [1] [-1] [1]	[-1][1][1][-1]	[-1]												and I	

6

All Trademarks mentioned in this document are property of their respective owners

FLUID

POWER

DESIGN

Ppk Risk model - Final Solution Choice

Ppk Risk model validation: Final simulation of the chosen solution

Ppk Risk model - Final Solution Analysis

Ppk Risk model - Final Solution Analysis

Polaris PLP30 - Results evaluation using Minitab

Radial clearances (Old design pump vs new Optimized design pump)

Polaris PLP30 - Results evaluation using Minitab

GAP & Material removal depth starting angle (Old pump vs Optimized design pump)

Polaris PLP30 - Results evaluation using Minitab

Material removal depth amount (Old pump vs Optimized design pump)

Polaris PLP30 - Results evaluation

Material removal depth vs angle (Old pump vs Optimized design pump)

Scraps after the use of Statistical Simulation in Casappa

Scrap percentage at the end of line volumetric efficiency evaluation: from 7 % to 1 % !

2008 / 09 Simplified simulation models (Two responses simulation, the example shown on Palisade website)

2010 \rightarrow **Current advanced simulation models** (More responses and advanced analysis)

Why Palisade @Risk ?

Compared to its main competitors in Six Sigma applications (i.e. Crystal Ball):

- @Risk5.x has the most complete, documented, stable and maintainable VBA / COM interface. This is the key factor of our choice.
- Simulation speed is secondary (CB is faster only if PSA formulas are usable).
- As shown on this page, the true bottleneck of our Ppk Risk model (and all robust Ppk models) is the time required to identify the Response Distributions.

Tol Distribution D Da	ar 1	Tol Distribution	D Dav 1	⊥ Tol	Distribution	D Dav 1	Tol.	Distribution	D Dar 1
DoSimulations with 8192 Items	ıs 🗵	DoSimulations with 16384	ltems 🛛 🗙	DoSimulati	ions with 32768	Items 🗙	DoSimulati	ons with 65526	Items 🗙
Indipendent Factors 29 Total Responses 12 Analyzed Responses 10	9 2 0	Indipendent Factors Total Responses Analyzed Responses	29 12 10	Indipende Total Resp Analyzed I	ent Factors ponses Responses	29 12 10	Indipende Total Resp Analyzed I	nt Factors oonses Responses	29 12 10
Time required (seconds) 19.	9.6720	Time required (seconds)	35.6947	Time requi	ired (seconds)	79.2844	Time requi	red (seconds)	154.0499
Monte Carlo Simulation5.4Fit Responses and Stat Calc13.Sensibility Coefficient Calc1.1Saving Memory0.0	4537 3.0303 1791 0089	Monte Carlo Simulation Fit Responses and Stat Calc Sensibility Coefficient Calc Saving Memory	7.7227 25.6558 2.3137 0.0025	Monte Car Fit Respor Sensibility Saving Me	rlo Simulation nses and Stat Calc Coefficient Calc emory	14.5967 59.8628 4.8224 0.0025	Monte Car Fit Respor Sensibility Saving Me	lo Simulation nses and Stat Calc Coefficient Calc mory	28.1611 115.4435 10.4427 0.0026
ОК		ОК			ОК			ОК	

• In addition, generally speaking @Risk has more additional advantages / features if compared to Crystal Ball (*).

(*) Franco Anzani's (DoS creator and designer) opinion

DoS Design of Simulations © : Technical Info

- Excel / @Risk5.x blank template (in other words it is an add-in of an add-in)
- Design Space of Simulations:
 - internal engine: CCD and Box Behnken
 - external (importing Design Expert XML definition file): Optimal and User Defined
 - up to 64 Input Factors [standard template] or unlimited (*) [advanced template]
 - among which up to 16 [Excel 2003] or 20 [Excel 2007] as factor levels
 - 3 to 16 Responses [standard template], 3 to 250 (*) [advanced template]
- Export Simulated Data to:
 - Design Expert: DoE Simulated Data analysis and/or additional optimization
 - Minitab: generic statistics analysis (**)
 - gGobi: data visualization software (freeware)
- Fully Customizable on request
- Work in progress: DLL callable version based on Champion of Italy structure
 - it does NOT use Excel formulas / parser / interface
 - fast simulation of millions of data
 - Excel is used only as a final report / graph tool

(*) limited by RAM memory, processor speed or available simulation time

(**) not suggested for DoE analysis (Minitab does not support robust transformation in DoE and - for a PpK Risk model - the transformation is a MUST)

© Dos Design of Simulations is a © of Franco Anzani, SixSigmaIn Team snc

Bushing blocks optimization for an external gear pump

If you require any further information, please contact:

Maria Pia D'Ambrosio - SixSigmaIn Team snc, pia.dambrosio@sixsigmain.it - www.sixsigmain.it Marco Manara - Casappa S.p.A., manaram@casappa.com - www.casappa.com

The videos shown during this presentation are available @ this web address:

http://www.sixsigmain.it/palisade_london.html

Acknowledgements

We would like to thank Franco Anzani - SixSigmaIn Team - for his collaboration and help to write this presentation.

Bushing blocks optimization for an external gear pump

Thank you for your attention

Q & A

